
Аналитик, который 
работает
Практический опыт трансформации роли SA 
из документиста в проектировщика 
архитектуры и синхронизатора команды



О спикере
Владимир 
Бурмистров
Главный системный аналитик

ИТ-Холдинг Т1, проект Dion

+ Порядок в документации 

+ Ускорился за счёт ИИ 

+ 18 лет в IT, всё ещё не выгорел 

+ Умею пользоваться поиском

+ Преподаватель и автор курсов

+ Прошёл путь от автоматизации бухгалтерии и 

производств до финтеха



Филипп Хандельянц
Руководитель разработки статических 
анализаторов

• 3 года был программистом в отделе разработки 

статического анализатора C и C++

• Потом 5 лет руководил этим отделом

• Сейчас координирую работу всех отделов разработки

• C++ не отпускает до сих пор, даже курс лекций про 

него случайно сделал

• В конце 2025 года ВНЕЗАПНО узнал, что я ещё и 

немного системный аналитик



4

Формат встречи

• ~50 минут доклада + секция Q&A

• Вопросы можно задавать в чате

• Будет приз за самый лучший вопрос



5



6

Вы аналитик



7

Вы аналитик

Дано:

• 8 встреч в день (некоторые по 30 минут)



8

Вы аналитик

Дано:

• 8 встреч в день (некоторые по 30 минут)

• Документы, которые никто не читает



9

Вы аналитик

Дано:

• 8 встреч в день (некоторые по 30 минут)

• Документы, которые никто не читает

• Чувство бесполезности



10

Вы аналитик

Дано:

• 8 встреч в день (некоторые по 30 минут)

• Документы, которые никто не читает

• Чувство бесполезности

• Разработчики не понимают спеки



11

Вы аналитик

Дано:

• 8 встреч в день (некоторые по 30 минут)

• Документы, которые никто не читает

• Чувство бесполезности

• Разработчики не понимают спеки

Знакомо? Значит, вы пришли в правильное место!



12

Проблема

Аналитик 

становится 

дорогим 

«секретарём» —

весь день на 

встречах, 

никакого 

влияния на 

результат



13

А что дальше?

• Плохая документация на проекте



14

А что дальше?

• Плохая документация на проекте

• Недовольная команда



15

А что дальше?

• Плохая документация на проекте

• Недовольная команда

• Не видно влияния на проект



16



17

Случай из жизни (Т1)

Расскажу, как делали календарь и сломались на межкомандном

взаимодействии.

А я чувствовал себя: 

• тупым,

• ненужным,

• меня уволят.



18

Фронт и бэк сами всё решат

Фронт ожидает: 

POST /orders { items, 

user_id, date }

Бэк ожидает: 

{ client_id, status }

В конце спринта: 

фронт и бэк друг друга не 

понимают → пятница вечером 

→ переделки → выходные



19

Фронт и бэк сами всё решат

Фронт ожидает: 

POST /orders { items, 

user_id, date }

Бэк ожидает: 

{userId, date, items}

В конце спринта: 

фронт и бэк друг друга не 

понимают → пятница вечером 

→ переделки → выходные



20

Фронт и бэк сами всё решат

Фронт ожидает: 

POST /orders { items, 

user_id, date }

Бэк ожидает: 

{userId, date, items}

В конце спринта: 

фронт и бэк друг друга не 

понимают → пятница вечером 

→ переделки → выходные



21

Фронт и бэк сами всё решат

Фронт ожидает:

POST /orders { items, 

userId, date }

Бэк вернёт: 

{ orderId, status }

• Баги интеграции:

5-7 критических за спринт

• Время на переделки:

30-40% спринта

• Документация:

Пишется месяц спустя, никто 

не читает



22

Возможно, что это какой-то мой уникальный опыт…



23

Случай из жизни (PVS-Studio)



24

Случай из жизни (PVS-Studio)

• Произошёл в момент портирования на Linux



25

Случай из жизни (PVS-Studio)

• Произошёл в момент портирования на Linux

• В продукте до этого была утилита конвертации отчётов PlogConverter



26

Случай из жизни (PVS-Studio)

• Произошёл в момент портирования на Linux

• В продукте до этого была утилита конвертации отчётов PlogConverter

• После завершения работ в продукте стало на одну утилиту конвертации 

больше

• Функционал – почти тот же*



27

Случай из жизни (PVS-Studio)

• Произошёл в момент портирования на Linux

• В продукте до этого была утилита конвертации отчётов PlogConverter

• После завершения работ в продукте стало на одну утилиту конвертации 

больше

• Функционал – почти тот же*

• Назвали незамысловато – plog-converter



28

Аналитик либо проектирует систему, 
либо его не нужно содержать



29

Выбирайте первое — результат очевиден

Аналитик либо проектирует систему, 
либо его не нужно содержать



30

Выбирайте первое — результат очевиден

Аналитик либо проектирует систему, 
либо его не нужно содержать

0

20

40

60

80

100

120

НАЧАЛЬНОЕ 1 СПРИНТ 2 СПРИНТ 3 СПРИНТ

УВАЖЕНИЕ К АНАЛИТИКУ

Уважение к аналитику



31

Вигерс фигни не скажет

«Ошибки, допущенные на этапе 

проектирования — это самые 

болезненные ошибки, потому что 

для их исправления требуется 

перезапуск всего 

производственного процесса»



32

И Макконнелл тоже не скажет



33

И Макконнелл тоже не скажет

«Общий принцип прост: исправлять 

ошибки нужно как можно раньше. 

Чем дольше дефект сохраняется в 

пищевой цепи разработки ПО, тем 

больше вреда он приносит на 

следующих этапах»



34

А что если перевернуть процесс?

• Боль
• Хаос



35

Пример моей команды (Т1)
1. Аналитик пишет спецификацию до спринта — подробная 

техническая архитектура, контракты API, состояния данных

2. Арх совет — согласование архитектуры с корп. архитектором

3. PBR — показ команде проработанной задачи и разбор 

корнер-кейсов

4. Фронт и бэк синхронизируются параллельно — используют 

одну спецификацию как договор, разрабатывают в один спринт

5. Аналитик занимается следующими задачами — иногда, 

конечно, отвечает на вопросы разрабов и тестеров

6. Результат: в конце спринта всё работает — минимум багов, 

полная документация готова сразу



36

Чего достигли?

• Ускорение спринтов на 15-30% (меньше переделок)

• 🐛 Снижение критических багов на 70-90%

• 📋 Документация появляется вместе с кодом, а не месяцы спустя

• 💪 Техлиды и разработчики просят хорошего аналитика (вместо 

раздражения)

• 🎯 Аналитик видит прямое влияние на метрики и результаты



37

Пример PVS-Studio (разработка новых 
анализаторов)



38

• C и C++ анализатор написан основателями аж в 2008 году

Пример PVS-Studio (разработка новых 
анализаторов)



39

• C и C++ анализатор написан основателями аж в 2008 году

• C# анализатор – pet-проект сотрудника, перекочевал в продукт в 2015 году

• Java анализатор – pet-проект сотрудника, перекочевал в продукт в 2019 году

Пример PVS-Studio (разработка новых 
анализаторов)



40

• C и C++ анализатор написан основателями аж в 2008 году

• C# анализатор – pet-проект сотрудника, перекочевал в продукт в 2015 году

• Java анализатор – pet-проект сотрудника, перекочевал в продукт в 2019 году

• Поставлена задача в 2026 году выпустить 3 новых анализатора: для Golang, JS и TS

Пример PVS-Studio (разработка новых 
анализаторов)



41

Пример PVS-Studio (разработка новых 
анализаторов)



42

1. Аналитик пишет спецификацию — архитектура решения, API, входные и 

выходные данные

Пример PVS-Studio (разработка новых 
анализаторов)



43

1. Аналитик пишет спецификацию — архитектура решения, API, входные и 

выходные данные

2. Согласуем спецификацию с CTO и тимлидами/техлидами

Пример PVS-Studio (разработка новых 
анализаторов)



44

1. Аналитик пишет спецификацию — архитектура решения, API, входные и 

выходные данные

2. Согласуем спецификацию с CTO и тимлидами/техлидами

3. Проводим груминг с командой(-ами) разработки

Пример PVS-Studio (разработка новых 
анализаторов)



45

1. Аналитик пишет спецификацию — архитектура решения, API, входные и 

выходные данные

2. Согласуем спецификацию с CTO и тимлидами/техлидами

3. Проводим груминг с командой(-ами) разработки

4. Разрабатываем анализатор и плагины для IDE параллельно

Пример PVS-Studio (разработка новых 
анализаторов)



46

1. Аналитик пишет спецификацию — архитектура решения, API, входные и 

выходные данные

2. Согласуем спецификацию с CTO и тимлидами/техлидами

3. Проводим груминг с командой(-ами) разработки

4. Разрабатываем анализатор и плагины для IDE параллельно

5. Ревьюеры проверяют, что реализация соответствует спецификации

Пример PVS-Studio (разработка новых 
анализаторов)



47

1. Аналитик пишет спецификацию — архитектура решения, API, входные и 

выходные данные

2. Согласуем спецификацию с CTO и тимлидами/техлидами

3. Проводим груминг с командой(-ами) разработки

4. Разрабатываем анализатор и плагины для IDE параллельно

5. Ревьюеры проверяют, что реализация соответствует спецификации

6. Аналитик отвечает на появившиеся вопросы разработчиков

Пример PVS-Studio (разработка новых 
анализаторов)



48

1. Аналитик пишет спецификацию — архитектура решения, API, входные и 

выходные данные

2. Согласуем спецификацию с CTO и тимлидами/техлидами

3. Проводим груминг с командой(-ами) разработки

4. Разрабатываем анализатор и плагины для IDE параллельно

5. Ревьюеры проверяют, что реализация соответствует спецификации

6. Аналитик отвечает на появившиеся вопросы разработчиков

Важно: уточняем спецификацию по ОС на всех этапах

Пример PVS-Studio (разработка новых 
анализаторов)



49

Чего достигли? (отзывы коллег)



50

Чего достигли? (отзывы коллег)

• ❌ Отказ от концепции «кто-то накидает простецкий прототип, а отдел потом 
доведёт до релиза»



51

Чего достигли? (отзывы коллег)

• ❌ Отказ от концепции «кто-то накидает простецкий прототип, а отдел потом 
доведёт до релиза»

• 🎓 Отделы знают о существовании огромного количества сценариев, 
которые надо поддержать



52

Чего достигли? (отзывы коллег)

• ❌ Отказ от концепции «кто-то накидает простецкий прототип, а отдел потом 
доведёт до релиза»

• 🎓 Отделы знают о существовании огромного количества сценариев, 
которые надо поддержать

• 🔎 Оценка объёма работ стала проще



53

Чего достигли? (отзывы коллег)

• ❌ Отказ от концепции «кто-то накидает простецкий прототип, а отдел потом 
доведёт до релиза»

• 🎓 Отделы знают о существовании огромного количества сценариев, 
которые надо поддержать

• 🔎 Оценка объёма работ стала проще

• 🙊 Стало меньше внутренних обсуждений и больше времени на реализацию



54

Чего достигли? (отзывы коллег)

• ❌ Отказ от концепции «кто-то накидает простецкий прототип, а отдел потом 
доведёт до релиза»

• 🎓 Отделы знают о существовании огромного количества сценариев, 
которые надо поддержать

• 🔎 Оценка объёма работ стала проще

• 🙊 Стало меньше внутренних обсуждений и больше времени на реализацию

• 📉 Уменьшили время на ревью: решение сверяется согласно спецификации



55

Чего достигли? (отзывы коллег)

• ❌ Отказ от концепции «кто-то накидает простецкий прототип, а отдел потом 
доведёт до релиза»

• 🎓 Отделы знают о существовании огромного количества сценариев, 
которые надо поддержать

• 🔎 Оценка объёма работ стала проще

• 🙊 Стало меньше внутренних обсуждений и больше времени на реализацию

• 📉 Уменьшили время на ревью: решение сверяется согласно спецификации

• ✅ Функционал стандартизирован, не появляются странные решения в 
продукте



56

Чего достигли? (отзывы коллег)

• ❌ Отказ от концепции «кто-то накидает простецкий прототип, а отдел потом 
доведёт до релиза»

• 🎓 Отделы знают о существовании огромного количества сценариев, 
которые надо поддержать

• 🔎 Оценка объёма работ стала проще

• 🙊 Стало меньше внутренних обсуждений и больше времени на реализацию

• 📉 Уменьшили время на ревью: решение сверяется согласно спецификации

• ✅ Функционал стандартизирован, не появляются странные решения в 
продукте

• 😮💨 Интроверты выдохнули



57

Вигерс фигни не скажет

«Требования должны быть 

достаточно хорошими, чтобы 

разработка могла продолжаться с 

приемлемым уровнем риска»



58

Жизненный цикл проекта

Вспоминаем, из чего у нас состоит итерация



59

Жизненный цикл проекта



60

Жизненный цикл проекта

Новая инициатива SC BRS РазработкаSRS



61

Новая инициатива

Жизненный цикл проекта

Новая инициатива SC BRS РазработкаSRS

Большая задача

Мы собрались делать 

что-то глобальное и не 

очень



62

Solution Concept

Жизненный цикл проекта

Новая инициатива SC BRS РазработкаSRS

Верхнеуровневое

решение

Подготовка к 

декомпозиции, 

разделение на 

участников

Большая задача

Мы собрались делать 

что-то глобальное и не 

очень



63

Solution Concept

Жизненный цикл проекта

Новая инициатива SC BRS РазработкаSRS

Верхнеуровневое

решение

Подготовка к 

декомпозиции, 

разделение на 

участников

Большая задача

Мы собрались делать 

что-то глобальное и не 

очень

Для кого: PO, Архитекторы, Технические лиды, Команды



64

Solution Concept

Жизненный цикл проекта

Новая инициатива SC BRS РазработкаSRS

Верхнеуровневое

решение

Подготовка к 

декомпозиции, 

разделение на 

участников

Большая задача

Мы собрались делать 

что-то глобальное и не 

очень

Для кого: PO, Архитекторы, Технические лиды, Команды

Когда писать:

✅ Всегда при новой крупной инициативе

✅ Вовлечены несколько команд

✅ Сложная/кросс-функциональная фича

⚠️ По ситуации для технических задач



65

Solution Concept

Жизненный цикл проекта

Новая инициатива SC BRS РазработкаSRS

Верхнеуровневое

решение

Подготовка к 

декомпозиции, 

разделение на 

участников

Большая задача

Мы собрались делать 

что-то глобальное и не 

очень

Для кого: PO, Архитекторы, Технические лиды, Команды

Когда писать:

✅ Всегда при новой крупной инициативе

✅ Вовлечены несколько команд

✅ Сложная/кросс-функциональная фича

⚠️ По ситуации для технических задач

Чек-лист успеха:

• Цели и бизнес-контекст (зачем это всё?)

• Краткое описание решения

• HLA (High Level Architecture): диаграммы C1 и 

C2

• Список требований (User Stories/Use Cases) —

не детализация!

• Ограничения и допущения решения

• ADR (Architecture Decision Records) — по 

необходимости



66

Solution Concept

Жизненный цикл проекта

Новая инициатива SC BRS РазработкаSRS

Верхнеуровневое

решение

Подготовка к 

декомпозиции, 

разделение на 

участников

Большая задача

Мы собрались делать 

что-то глобальное и не 

очень

Для кого: PO, Архитекторы, Технические лиды, Команды

Когда писать:

✅ Всегда при новой крупной инициативе

✅ Вовлечены несколько команд

✅ Сложная/кросс-функциональная фича

⚠️ По ситуации для технических задач

Чек-лист успеха:

• Цели и бизнес-контекст (зачем это всё?)

• Краткое описание решения

• HLA (High Level Architecture): диаграммы C1 и 

C2

• Список требований (User Stories/Use Cases) —

не детализация!

• Ограничения и допущения решения

• ADR (Architecture Decision Records) — по 

необходимости

TechMeetup #7 System analysis

https://rutube.ru/video/6898265cb67b9012b5d7efe6a328bae9/


67

Business Requirements Specification

Жизненный цикл проекта

Новая инициатива SC BRS РазработкаSRS

Как это для 

пользователя

Что рисовать дизайну, 

корнер-кейсы

Большая задача

Мы собрались делать 

что-то глобальное и не 

очень

Верхнеуровневое

решение

Подготовка к 

декомпозиции, 

разделение на 

участников



68

Business Requirements Specification

Жизненный цикл проекта

Новая инициатива SC BRS РазработкаSRS

Как это для 

пользователя

Что рисовать дизайну, 

корнер-кейсы

Большая задача

Мы собрались делать 

что-то глобальное и не 

очень

Верхнеуровневое

решение

Подготовка к 

декомпозиции, 

разделение на 

участников

Для кого: PO, Команда разработки, Тестировщики, 

Дизайнеры



69

Business Requirements Specification

Жизненный цикл проекта

Новая инициатива SC BRS РазработкаSRS

Как это для 

пользователя

Что рисовать дизайну, 

корнер-кейсы

Большая задача

Мы собрались делать 

что-то глобальное и не 

очень

Верхнеуровневое

решение

Подготовка к 

декомпозиции, 

разделение на 

участников

Для кого: PO, Команда разработки, Тестировщики, 

Дизайнеры

Когда писать:

✅ Всегда, если это пользовательская фича

❌ Не нужен для чисто технических задач



70

Business Requirements Specification

Жизненный цикл проекта

Новая инициатива SC BRS РазработкаSRS

Как это для 

пользователя

Что рисовать дизайну, 

корнер-кейсы

Большая задача

Мы собрались делать 

что-то глобальное и не 

очень

Верхнеуровневое

решение

Подготовка к 

декомпозиции, 

разделение на 

участников

Для кого: PO, Команда разработки, Тестировщики, 

Дизайнеры

Когда писать:

✅ Всегда, если это пользовательская фича

❌ Не нужен для чисто технических задач

Чек-лист успеха:

• Глоссарий (все термины определены)

• User Story в формате: As [role], I want [action], 

So that [benefit]

• Проблематика: AS IS / TO BE

• Acceptance Criteria в формате 

Given/When/Then

• Анализ конкурентов (опционально)

• Нефункциональные требования:

• Требования к UI (ссылка на макеты)

• Требования к производительности

• Требования к безопасности



71

Software Requirements Specification

Жизненный цикл проекта

Новая инициатива SC BRS РазработкаSRS

Что нужно 

сделать 

разработчику?

Техничка

Большая задача

Мы собрались делать 

что-то глобальное и не 

очень

Верхнеуровневое

решение

Подготовка к 

декомпозиции, 

разделение на 

участников

Как это для 

пользователя

Что рисовать дизайну, 

корнер-кейсы

Для кого: РАЗРАБОТЧИКИ (главные потребители!)



72

Software Requirements Specification

Жизненный цикл проекта

Новая инициатива SC BRS РазработкаSRS

Что нужно 

сделать 

разработчику?

Техничка

Большая задача

Мы собрались делать 

что-то глобальное и не 

очень

Верхнеуровневое

решение

Подготовка к 

декомпозиции, 

разделение на 

участников

Как это для 

пользователя

Что рисовать дизайну, 

корнер-кейсы

Для кого: РАЗРАБОТЧИКИ (главные потребители!)

Когда писать:

✅ ВСЕГДА



73

Software Requirements Specification

Жизненный цикл проекта

Новая инициатива SC BRS РазработкаSRS

Что нужно 

сделать 

разработчику?

Техничка

Большая задача

Мы собрались делать 

что-то глобальное и не 

очень

Верхнеуровневое

решение

Подготовка к 

декомпозиции, 

разделение на 

участников

Как это для 

пользователя

Что рисовать дизайну, 

корнер-кейсы

Для кого: РАЗРАБОТЧИКИ (главные потребители!)

Когда писать:

✅ ВСЕГДА

Золотое правило:
Всегда начинайте SRS с КРАТКОГО ОПИСАНИЯ РЕШЕНИЯ (3-5 предложений)!

Без него разработчик смотрит на 50 страниц спеки и думает «ой бл*...»



74



75

Software Requirements Specification

Жизненный цикл проекта

Новая инициатива SC BRS РазработкаSRS

Что нужно 

сделать 

разработчику?

Техничка

Большая задача

Мы собрались делать 

что-то глобальное и не 

очень

Верхнеуровневое

решение

Подготовка к 

декомпозиции, 

разделение на 

участников

Как это для 

пользователя

Что рисовать дизайну, 

корнер-кейсы

Для кого: РАЗРАБОТЧИКИ (главные потребители!)

Когда писать:

✅ ВСЕГДА

Золотое правило:
Всегда начинайте SRS с КРАТКОГО ОПИСАНИЯ РЕШЕНИЯ (3-5 предложений)!

Без него разработчик смотрит на 50 страниц спеки и думает «ой бл*...»

Чек-лист успеха:

• Краткое описание решения (что меняем: 

3 API, 2 таблицы, 1 новый сервис)

• Таблица изменений BE/FE

• Диаграммы:

• C2 (если изменяется архитектура)

• Sequence diagrams (сценарии 

взаимодействия)

• Логическая модель данных (ER-диаграммы, 

если изменяется БД)

• Описание методов: 

REST/gRPC/WSS/Kafka/GraphQL…

• Маппинг макетов UI и вызовов API

• Нефункциональные требования:

• Производительность

• Аудит

• Информационная безопасность

• Продуктовые метрики



76

Software Requirements Specification

Жизненный цикл проекта

Новая инициатива SC BRS РазработкаSRS

Что нужно 

сделать 

разработчику?

Техничка

Большая задача

Мы собрались делать 

что-то глобальное и не 

очень

Верхнеуровневое

решение

Подготовка к 

декомпозиции, 

разделение на 

участников

Как это для 

пользователя

Что рисовать дизайну, 

корнер кейсы

Для кого: РАЗРАБОТЧИКИ (главные потребители!)

Когда писать:

✅ ВСЕГДА

Золотое правило:
Всегда начинайте SRS с КРАТКОГО ОПИСАНИЯ РЕШЕНИЯ (3-5 предложений)!

Без него разработчик смотрит на 50 страниц спеки и думает «ой бл*...»

Чек-лист успеха:

• Краткое описание решения (что меняем: 3 

API, 2 таблицы, 1 новый сервис)

• Таблица изменений BE/FE

• Диаграммы:

• C2 (если изменяется архитектура)

• Sequence diagrams (сценарии 

взаимодействия)

• Логическая модель данных (ER-диаграммы, 

если изменяется БД)

• Описание методов: 

REST/gRPC/WSS/Kafka/GraphQL…

• Маппинг макетов UI и вызовов API

• Нефункциональные требования:

• Производительность

• Аудит

• Информационная безопасность

• Продуктовые метрики



77

Разработка

Жизненный цикл проекта

Новая инициатива SC BRS РазработкаSRS

Что нужно 

сделать 

разработчику?

Техничка

Мы все

Придут, конечно, 

разрабы, 

тестировщики… ну или 

сделать для них 

созвон

Большая задача

Мы собрались делать 

что-то глобальное и не 

очень

Верхнеуровневое

решение

Подготовка к 

декомпозиции, 

разделение на 

участников

Как это для 

пользователя

Что рисовать дизайну, 

корнер-кейсы



78

Много документов



79

Много документов
Разработка не будет читать



80

Много документов
Разработка не будет читать
100 вопросов зададут



81

Много документов
Разработка не будет читать
100 вопросов зададут



82

Много документов
Разработка не будет читать
100 вопросов зададут



83

Много документов
Разработка не будет читать
100 вопросов зададут

Meeting notes как средство 

коммуникации в проектной 

команде

https://www.youtube.com/watch?v=tpE4ABBCBuc


84

RACI МАТРИЦА ДЛЯ 
АРТЕФАКТОВ
RACI — это:

- R (Responsible) — Исполнитель

- A (Accountable) — Ответственный за результат

- C (Consulted) — Консультант

- I (Informed) — Информируемый



85

RACI МАТРИЦА ДЛЯ 
АРТЕФАКТОВ
RACI — это:

- R (Responsible) — Исполнитель

- A (Accountable) — Ответственный за результат

- C (Consulted) — Консультант

- I (Informed) — Информируемый



86

Подытог

• Спецификация — это до разработки, а не после

• Каждый артефакт имеет своего потребителя и RACI

• Диаграммы — только если показывают изменения, 

не просто для красоты



87

Правило

• Если нет Responsible → не пиши

• Если нет Accountable → не пиши

• Если нет хотя бы одного Consulted → это документ 

ради документа



88

Пример документов ради 
документов
❌ SC без решения (просто описание проблемы)

❌ ADR без контекста (просто "мы выбрали Redis")

❌ BRS без метрик (просто список фич)

❌ SRS без примеров (только описание, нет JSON)

❌ "Красивая диаграмма текущего состояния" (никто 

её не обновляет)



89

Картинка понятнее текста
• с4

• ERD

• Sequence

• State

• BPMN



90

Картинка понятнее текста
• с4

• ERD

• Sequence

• State

• BPMN

❌ C4 Level 4 (слишком детально, быстро 

устаревает)

❌ Диаграмма текущего состояния БД (для 

вики, не для спринта)

❌ UML классы (не нужно SA, это для 

документирования кода)

❌ "Красивая архитектура" (если не показывает 

изменения)

❌ Диаграмма, которую никто не обновляет 

(зачем она нужна?)

❌ Непонятные



91

Начни сегодня

• Изучи свои документы

• Составь RACI

• Поговори с командой



92

ЗАКЛЮЧЕНИЕ
Документы ≠ Бюрократия

Документы = Актив (когда они ДЛЯ людей)

Артефакты = топливо, когда:

- У каждого есть целевая аудитория (RACI)

- Они решают реальные проблемы команды

- Заполняются разумно (здравый смысл > 

догма)

Делать БОЛЬШЕ, писать МЕНЬШЕ:

- Один хороший документ > три 

посредственных

- Шаблон = чек-лист, а не повинность

- Документы для людей, а не для процесса



О спикере
Владимир 
Бурмистров
Главный системный аналитик

ИТ-Холдинг Т1, проект Dion

Тг канал Личный тг Карьера в Т1
Диагноз 

аналитик

https://t.me/CrazyElephant_note
https://t.me/CrazyElephant
https://career.t1.ru/?utm_source=offline&utm_medium=meetup&utm_campaign=brand&utm_content=ambi&utm_term=burmistrov
https://t.me/+GJ0VSL23V-YwOTIy


Филипп Хандельянц
Руководитель разработки статических 
анализаторов

Информация о 
PVS-Studio

Наша группа в 
Telegram

Попробовать 
на 1 месяц

https://pvs-studio.ru/ru/pvs-studio/
https://t.me/pvsstudio_rus
https://pvs-studio.ru/training_webinar


Спасибо 
за внимание



96

Информация о 
PVS-Studio

Группа PVS в 
Telegram

Попробовать на 1 
месяц

Личный тг Фила

Тг канал: Burmistrov -

It и около

Личный тг

Владимира
Карьера в Т1 Тг канал: Диагноз 

аналитик

https://pvs-studio.ru/ru/pvs-studio/
https://t.me/pvsstudio_rus
https://pvs-studio.ru/training_webinar
https://t.me/khandeliants
https://t.me/CrazyElephant_note
https://t.me/CrazyElephant
https://career.t1.ru/?utm_source=offline&utm_medium=meetup&utm_campaign=brand&utm_content=ambi&utm_term=burmistrov
https://t.me/+GJ0VSL23V-YwOTIy

